Hammersley: Percolation and Diffusion Processes

Zitat

“A percolation process is the spread of a fluid through a medium under the influence of a random mechanism associated with the medium. This contrasts with a diffusion process, where the random mechanism is associated with the fluid.” (p. 790) #Hammersley #percolation #diffusion #process

Hammersley, John M., Percolation Processes: Lower Bounds for the Critical Probability, in: The Annals of Mathematical Statistics 28 (1957), 790–795.

Foucault: Die Opposition Struktur – Werden

Zitat

“Die Opposition Struktur – Werden ist weder für die Definition des historischen Feldes noch wahrscheinlich für die Definition einer strukturalen Methode zutreffend.” (p. 22) #Foucault #Struktur #Werden #HistorischesFeld #StrukturaleMethode

Foucault, Michel, Archäologie des Wissens; übersetzt von Ulrich Köppen. Frankfurt/M.: Suhrkamp Verlag 1973.

Rancière: Deux histoires

Zitat

“Ainsi se trouve révoquée la ligne de par­tage aristotélicienne entre deux «his­toires» – celle des historiens et celle des poètes -, laquelle ne séparait pas seule­ment la réalité et la fiction, mais aussi la succession empirique et la nécessité construite.” (p. 59) #Rancière #histoire

Rancière, Jacques, Le Partage du sensible: Esthétique et politique. Paris: La Fabrique Éditions 2000.

Husserl: Transzendentale Reduktion

Zitat

“Die transzendentale Reduktion bindet mich an den Strom meiner reinen Bewußtseinserlebnisse und an die durch ihre Aktualitäten und Potentialitäten konstituierten Einheiten. Es scheint nun doch selbstverständlich, daß solche Einheiten von meinem ego unabtrennbar sind und somit zu seiner Konkretion selbst gehören.” (p. 121) #Husserl #TranszendentaleReduktion

Husserl, Edmund, Cartesianische Meditationen und Pariser Vorträge; Bd. 1 (Husserliana). Dordrecht: Springer 21991.

Bourbaki: Les structures topologiques

Zitat

“Nous dirons encore quelques mots d’un troisième grand type de structures, les structures topologiques (ou topologies): elles fournissent une formulation mathématique abstraite des notions intuitives de voisinage, de limit et de continuité, auxquelles nous conduit notre conception de l’espace.” (p. 42) #Bourbaki #structure #topologie #voisinage #limit #continuité #espace

Bourbaki, Nicolas, L’architecture des mathématiques, in: François Le Lionnais (Hg.), Les grands courants de la pensée mathématique. Marseille: Cahiers du Sud 1948, 35–47.